31,378 research outputs found

    Mean Field Limit of a Behavioral Financial Market Model

    Full text link
    In the past decade there has been a growing interest in agent-based econophysical financial market models. The goal of these models is to gain further insights into stylized facts of financial data. We derive the mean field limit of the econophysical model by Cross, Grinfeld, Lamba and Seaman (Physica A, 354) and show that the kinetic limit is a good approximation of the original model. Our kinetic model is able to replicate some of the most prominent stylized facts, namely fat-tails of asset returns, uncorrelated stock price returns and volatility clustering. Interestingly, psychological misperceptions of investors can be accounted to be the origin of the appearance of stylized facts. The mesoscopic model allows us to study the model analytically. We derive steady state solutions and entropy bounds of the deterministic skeleton. These first analytical results already guide us to explanations for the complex dynamics of the model

    StaRMAP - A second order staggered grid method for spherical harmonics moment equations of radiative transfer

    Full text link
    We present a simple method to solve spherical harmonics moment systems, such as the the time-dependent PNP_N and SPNSP_N equations, of radiative transfer. The method, which works for arbitrary moment order NN, makes use of the specific coupling between the moments in the PNP_N equations. This coupling naturally induces staggered grids in space and time, which in turn give rise to a canonical, second-order accurate finite difference scheme. While the scheme does not possess TVD or realizability limiters, its simplicity allows for a very efficient implementation in Matlab. We present several test cases, some of which demonstrate that the code solves problems with ten million degrees of freedom in space, angle, and time within a few seconds. The code for the numerical scheme, called StaRMAP (Staggered grid Radiation Moment Approximation), along with files for all presented test cases, can be downloaded so that all results can be reproduced by the reader.Comment: 28 pages, 7 figures; StaRMAP code available at http://www.math.temple.edu/~seibold/research/starma

    Metric entropy, n-widths, and sampling of functions on manifolds

    Full text link
    We first investigate on the asymptotics of the Kolmogorov metric entropy and nonlinear n-widths of approximation spaces on some function classes on manifolds and quasi-metric measure spaces. Secondly, we develop constructive algorithms to represent those functions within a prescribed accuracy. The constructions can be based on either spectral information or scattered samples of the target function. Our algorithmic scheme is asymptotically optimal in the sense of nonlinear n-widths and asymptotically optimal up to a logarithmic factor with respect to the metric entropy

    The Repurchase Behavior of Individual Investors: An Experimental Investigation

    Get PDF
    We analyze two recently documented follow-on purchase and repurchase patterns experimentally: Individual investors’ preference for purchasing additional shares of a stock that decreased rather than increased in value succeeding an initial purchase (pattern 1) and investors’ tendency for purchasing stocks that they previously sold at a higher price (pattern 2). Similar to the field data study by Odean, Strahilevitz, and Barber (2004), subjects in our experiment are about 2.5 to 3 times as likely to purchase units of a single fictitious good if the price of the good declined following a purchase or sale in the previous period. As an assignment of choices clearly reduces the effect, we ar-gue that investors are involved in counterfactual thinking: They refrain from purchasing additional shares or repurchasing shares at a higher price because doing so means admitting to their ex post wrong decision.
    • …
    corecore